

Groups in theoretical physics.

Inner and space-time symmetries.

Supergroups.

Content

14|3|3" LIE DERIVATIVE OF METRIC:

$$\pounds_{\xi}g_{\mu\nu} = \xi^{\eta}\partial_{\eta}g_{\mu\nu} + g_{\eta\mu}\partial_{\nu}\xi^{\eta} + g_{\nu\eta}\partial_{\mu}\xi^{\eta} = 0 \tag{1}$$

If space is homogeneous, we have $\frac{(n+1)}{2}$ Killings vectors ξ . For 3D: 3 rotations + 3 translations.

KILLING VECTORS PRODUCE INFINITESIMAL TRANSFORMATIONS

$$x^{\mu} = x^{\mu} + \xi^{\mu} \delta t \tag{2}$$

WHERE t is parameter of one dimensional subgroup G_1 of the whole group G_n of transformations.

LET'S DEFINE OPERATORS THAT CORRESPOND TO THESE
TRANSFORMATIONS

$$X_{a} = \xi^{\mu}_{a} \partial_{\mu} \tag{3}$$

THEN CAN BE BUILT N-DIMENSIONAL BASIS FOR THE GROUP G_n (ALGEBRA AG_n)

$$[X_a, X_b] = \left(\xi_a^{\mu} \partial_{\mu} \xi_b^{\nu} - \xi_b^{\mu} \partial_{\mu} \xi_a^{\nu}\right) \partial_{\nu} \tag{4}$$

14/3/14

IF WE DO IT FOR SPACES WITH CONSTANT CURVATURE, WE WILL GET THE FOLLOWING ALGEBRA

$$[R_a, R_b] = \varepsilon_{abc} R_c$$
 $[T_a, T_b] = \frac{k}{\rho^2} \varepsilon_{abc} R_c$ (5) $[R_a, T_b] = \varepsilon_{abc} T_c$

LET'S CONSIDER A FLAT SPACE AND ADD TIME TRANSLATION
(POINCARE GROUP). IN THIS CASE WE HAVE THE FOLLOWING
COMMUTATION RELATIONS

$$\begin{split} [P^{\mu}, P^{\nu}] &= 0 \\ [M^{\mu\nu}, P^{\gamma}] &= i \left(P^{\mu} \eta^{\nu\gamma} - P^{\nu} \eta^{\mu\gamma} \right) \\ [M^{\mu\nu}, M^{\rho\sigma}] &= i \left(M^{\mu\sigma} \eta^{\nu\rho} + M^{\nu\rho} \eta^{\mu\sigma} - M^{\mu\rho} \eta^{\nu\sigma} - M^{\nu\sigma} \eta^{\mu\rho} \right) \end{split}$$
 (6)

WHERE $P^{\mu}=(T_0,T_a)$; $R_a=rac{1}{2}arepsilon_{abc}M_{bc}$; $K_a=-M_{0a}$ - Boost.

14/3/14

THERE CAN BE INTRODUCED OPERATORS

$$S_a=rac{1}{2}\left(R_a+iK_a
ight), J_a=rac{1}{2}\left(R_a-iK_a
ight)$$
, which provide local isomorphism $SO(3,1)\backsim SU(2) imes SU(2)$

$$[S_a, S_b] = i\varepsilon_{abc}S_c$$

 $[J_a, J_b] = i\varepsilon_{abc}J_c$ (7)
 $[J_a, S_b] = 0.$

THERE ARE TWO CASIMIR OPERATORS: ONE FOR EACH SU(2).

One of them is responsible for mass, another for spin of particle.

REPRESENTATION OF POINCARE GROUP CASIMIR OPERATORS ARE

$$C_1 = P^{\mu} P_{\mu}$$
 $C_2 = W^{\mu} W_{\mu}$. (8)

WHERE $W_{\mu}=rac{1}{2}arepsilon_{\mu
u
ho\sigma}P^{
u}M^{
ho\sigma}$ - is Paul-Ljubanski vector.

1) Massive case. Let's choose $P^\mu=(m,0,0,0)$, then we have $W_0=0,W_a=-mR_a$.

THAT IS WHY THE STATE OF MASSIVE PARTICLE CAN BE DESCRIBED BY THE FOLLOWING "Ket" VECTOR IN HILBERT SPACE

$$|m, j, p^a, j_3>$$
 (9)

14/3/14

2) Massless case.

LET'S CHOOSE $P^\mu=(E,0,0,E)$, THEN WE HAVE $W_0=-ER_3,W_1=E(R_1-K_2),W_2=E(R_2+K_1),W_3=ER_3$. And The following commutations

$$[W_1, W_2] = 0$$

 $[W_3, W_1] = -iEW_2$
 $[W_3, W_2] = iEW_1$
(10)

It forms a little subgroup E(2,1). In order to avoid infinite Repr. $W_1=W_2=0$. Then the "ket" vector for massless particle

$$|0,0,p^a,\lambda>$$
 (11)

Thank you for your attention!

to be continued...