
14.23

Instead of a single charge e moving with constant velocity ω0R in a circular path of radius R , as in Problem
14.15, N charges qj move with �xed relative positions θj around the same circle.

(a) Show that the power radiated into the mth multiple of ω0 is

dPm(N)

dΩ
=
dPm(1)

dΩ
Fm(N)

where dPm(1)
dΩ

is the result of part a in Problem 14.15 with e −→ 1, and

Fm(N) = |
N∑
j=1

qje
ımθj |2

(b) Show that, if the charges are all equal in magnitude and uniformly spaced around the circle, energy is
radiated only into multiples of Nω0, but with an intensity N2 times that for a single charge. Give a qualitative
explanation of these facts.

(c) For the situatuon of part b, without detailed calculations show that for nonrelativistic motion the
dependence on N of the total power radiated is dominantly as β2N , so that in the limit N −→∞ no radiation
is emitted.

(d) By arguments like those of part ñ show that for N relativistic particles of equal charge and symmetrically

arrayed, the radiated power varies with N mainly as e
− 2N

3γ3 for N � γ3, so that again in the limit N −→∞ no
radiation is emitted.

(e) What relevance have the results of parts ñ and d to the radiation properties of a steady current in a
loop?

Solution

1) The single particle radiation was derived from dρ1
dΩ

= e2

4πc
|n̂ × (n̂ × ~̇β)|2 this was also written dρ1

dΩ
=

const|A(t)|2 where A(t) ∝ E-�eld. If we consider an ensemble of particles, the E-�elds from each particle are
summed to give the total �eld so:

AN(t) =
N∑
j=1

Aj(t)e
ıφj , with φj = ωtj = mω0tj (ω0tj = Θj)

thus,

dρN
dΩ

=
1

4πc
|
N∑
j=1

qjn̂j × (n̂j × ~̇βj)e
ımΘj |2

on a circular orbit n̂j = n̂ ∀j and ~̇βj = ~β ∀j so:

dρN
dΩ

=
1

4πc
|n̂j × (n̂× ~̇β)|2|

N∑
j=1

qje
ımΘj |2 =

dρ1(e = 1)

dΩ
× F (N)

2) If qj = q ∀j, then F (N) = q2|
N∑
j=1

eımΘj |2

If particles are equally spaced on the circle then Θj = j∆Θ with ∆Θ = 2π
N

and so:

1



2

F (N) = q2|
N∑
j=1

eımj
2π
N |2

If m = kN with k ∈ N then F (N) = N2q2

So the radiation emitted at m = kN is enhanced by a factor N2 compare to a single-particle radiation.
3) We now consider the non-relativistic case, the second term in fracdρ1(e = 1)dΩ dominates and thus

dρN
dΩ

=
e2ω4

0R
2

2πc3
m2[

cot2 Θ

β2
J2
m(mβ sin Θ)]

ω0 =
βc

R
, andJ2

m(mβ sin Θ) =
(mβ sin Θ)m

2T (m+ 1)
give:

dρN
dΩ

=
e2β4c

2πR2

m2

β2

mβ sin Θ)2m

4T 2(m+ 1)
cot2 Θ

∝ β2(m+1) ∼ β2N , when m ≈ N, n� 1

4) In the ultra-relativistic case and assuming N � γ3 then

ω � ωc

{
ω = Nω0 = NR

c

ωc = 3
2
γ3 c

R

Therefore we can approximate the radiation spectrum by 1:

dI
dω
∝

√
ω
ωc
e−2 ω

ωc ∝
{
e

(−N c
R

)( 2R
3cγ3

)

5) A steady current loop does not radiate as it circulates.

1
This is valid for ω � ωc


