
12.6

A particle of mass m and charge e moves in the laboratory in crossed, static, uniform, electric and magnetic
�elds. E is parallel to the x axis; Â is parallel to the ó axis.

(a) For |E| < |Â| make the necessary Lorentz transformation described in Section 12.3 to obtain explicitly
parametric equations for the particle's trajectory.

(b) Repeat the calculation of part a for |E| > |Â|.

Solution

Part (a) can be done from the results from part (b)...
So let's �rst do (b):
(b) the covariant equation of motion is:

duα

dτ
=

e

mc
Fαβuβ

F: �eld-strength tensor and u is 4-velocity

if ~E ‖ ~B ‖ ẑ then

Fαβ =


0 0 0 −Ez
0 0 −Bz 0

0 Bz 0 0

Ez 0 0 0


so the 4-equations for the 4-velocity components are:

du0

dτ
= − e

mc
Ezu3 = e

mc
Ezu

3

du1

dτ
= − e

mc
Bzu2 = e

mc
Bzu

2

du2

dτ
= e

mc
Bzu1 = − e

mc
Bzu

1

du3

dτ
= e

mc
Ezu0 = e

mc
Ezu

0

That is two sets of couple ODE:

(1)

{
du0

dτ
= e

mc
Ezu

3

du2

dτ
= − e

mc
Bzu

1
, (2)

{
du1

dτ
= e

mc
Bzu

2

du2

dτ
= − e

mc
Bzu

1

set (1) gives:

d2u0

dτ 2
=

e

mc
Ez
du3

dτ
= (

e

mc
Ez)

2u0

and u0 = C1 cosh(κτ), u3 = C1 sinh(κτ) where κ = e
mc
Ez (3)

set (2) was solved in class: let S = u1 + ıu2 then set (2) can be casted in one ODE:

dS

dτ
= − ıeB

mc
S ⇒ S = C2e

− ıeB
mc

τ

⇒ u1 = C2 cos( eB
mc
τ), u2 = −C2 sin( eB

mc
τ) (4)

1



2

Let's follow JDJ and introduce ρ ≡ E
B
and φ = eB

mc
τ .

Then we got: u0 = C1 cosh(φρ), u3 = C1 sinh(φρ); u1 = C2 cos(φ), u2 = C2 sin(φ).

The norm of the 4-velocity is uαuα = c2, this gives a condition between constants C1 and C2:

uαuα = C2
1 [cosh2(φρ)− sinh2(φρ)]− C2

2 [cos2(φ) + sin2(φ)] = c2

⇒ C2
1 − C2

2 = c2

as suggested in (4) take C2 = Ac, then C1 = c
√

1 + A2 and
u0 = C

√
1 + A2 cosh(φρ), u3 = C

√
1 + A2 sinh(φρ); u1 = Ac cos(φ), u2 = Ac sin(φ).

integrate w.r.t. time to get equation of motion:{
ct = c

√
1 + A2 mc

EB
B
E

sinh(φρ) ≡ R
ρ

√
1 + A2 sinh(φ)

z = R
ρ

√
1 + A2 cosh(φρ)

and{
x = AR sin(φρ)

y = AR cos(φρ)
, where R ≡ mc2

EB

(a) case where ~E and ~B make an angle Θ. Consider ~E = Eẑ, ~B ∈ (x− z) plane. Θ = ∠( ~B, ẑ) in referential

K. We need to �nd a Lorentz transformation such that in x′, ~B ‖ ~E. Consider ~β = βŷ in K then ~β ~E = 0,
~β~β = 0, ~β × ~E = βEx̂ and ~β × ~B = βB(cos Θx̂− sin Θẑ).

Using JDJ Eq. 11.144 in K′:

~E ′ = γ( ~E + ~β × ~B) = γ[Eẑ + βB cos Θx̂− βB sin Θẑ] = γ[(E − βB sin Θ)ẑ + βB cos Θx̂]

~B′ = γ( ~B − ~β × ~E) = γ[B sin Θx̂+B cos Θẑ − βEx̂] = γ[B cos Θẑ + (B sin Θ− βE)x̂]

~E ′ × ~B = 0⇔ βB2 cos2 Θ− (E − βB sin Θ)(B sin Θ− βE) = 0

βB2 cos2 Θ− (EB sin Θ− βE2 − βb2 sin2 Θ + β2BE sin Θ) = 0

βB2 + βE2 − EB sin Θ(1 + β2) = 0

So β should verify:
β

1 + β2
=
EB sin Θ

E2 +B2
=

~E × ~B

E2 +B2

In the frame K′, ~B′ and vecE ′ are parralel both make an angle Ψ with z′. The angle Ψ can be found from
~B′; we have ~B′ = B0(cos Ψẑ + sin Ψx̂) in the new frame ( ~B ⊥ ~β).

So tan Ψ = B sin Θ−βE
B cos Θ

.

So to have the same case as in (b) ~B ‖ ~E ‖ ẑ we need to do a rotation of K′ by Ψ→ K′′. In K ′′ the equation
of motion are given by (b) and one �just� need to do the inverse rotation and Lorentz boost to obtain the general
equation of motion in K.


