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Hydrodynamics

I was observing the motion of a boat which
was rapidly drawn along a narrow channel
by a pair of horses, when the boat suddenly
stopped not so the mass of water which it
had put in motion; it rolled forward with great
velocity, assuming the form of a large solitary
elevation which continued its course along the
channel apparently without change of form or
diminution of speed...

Figure: John Scott Russell [Courtesy of Wikipedia]
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Experiments with water solitons

Figure: Soliton [Courtesy of Wikipedia]

Figure: Wave tank [Courtesy of Chris Eilbeck/Heriot-Watt Uni-
versity]

Main idea of nonlinear dynamics - we cannot obtain this effects by a linear approach. Super-
position principle fails.
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Acoustics

”The wave of translation in the oceans of water, air, and ether” (1885)

description of the experiment, where observers heard the report of the gun first, while
the order to fire reached them second.

Conclusion

Disturbance with the high amplitude propagates faster than the other one with the low.
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Further investigations

Korteweg - De Vries (KdV) equation [Korteweg and De Vries, 1895]:

∂tφ+ ∂3
t φ+ 6φ∂xφ = 0

- describes Russel’s solitons

Fermi - Pasta - Ulam (FPU) problem (1955) - nonlinear system exhibit complex behavior

connection between FPU problem and KdV equation - [Zabusky and Kruskal, 1965]

first nonlinear acoustic equation [Kuznetsov, 1971]:

∂2
t φ̃−∆φ̃ = ε∂t[b∆φ̃+ (∇φ̃)2 + a(∂tφ̃)2]
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Main results for the KZK equation: 2∂2
τξ1
ρ1 − ∂2

ξ2
ρ1 = b∂3

τρ1 + a′∂2
τρ

2
1

Main Results in this area [by A. Rozanova-Pierrat]

Local unique solvability ∀u0 ∈ Hs, s > [n
2

] + 1;

For viscous case (β > 0)∃! global solution for sufficiently small initial data;

For the case β = 0 @ global in time smooth solution (i.e. ∃ shock wave);

This equation is indeed the approximation of NS system for some finite time.
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Canonical form of Navier-Stokes system/Equation of state



∂tρ+∇ · (ρ~u) = 0,

ρ (∂t~u+ (~u · ∇)~u) = −∇p+ (
1

3
η + ξ)∇∇ · ~u+ η∆~u,

ρT (∂ts+ ~u · ∇s) =
η

2

[
∂kui + ∂iuk −

2

3
δik∂lul

]2

+ ξ(∇ · ~u)2 + κ∆T ,

(1a)

(1b)

(1c)

Equation of state for an ideal gas

p(ρ, T ) = ρRT ⇒ T (p, ρ) =
p

ρR
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Assumptions for all the equations

Order of approximation

p(x, y, z, t) = p0 + εp1(x, y, z, t) + ε2p2(x, y, z, t); we work in R3

ρ(x, y, z, t) = ρ0 + ερ1(x, y, z, t)

~u(x, y, z, t) = 0 + ε~v(x, y, z, t)

T (x, y, z, t) = T0 + εT1(x, y, z, t)

viscosity and heat conduction number are also small (the same order):
4

3
η + ξ = εδ,

κ = εκ̄

for the work we have to take into account every term up to second-order

ε =
|~u|
c0

Assumption of irrotational flow

∇× ~u = 0⇒ ~u = −∇φ

For simplicity let’s use c0 = 1
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Kuznetsov

equation
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Derivation of Kuznetsov equation: ∂2
t φ−∆φ = ε∂t[b∆φ+ (∇φ)2 +a(∂tφ)2]

Original work – [Kuznetsov, 1971]

The law of mass conservation

∂tρ+∇ · (ρ~u) = 0

⇓

After expansion

ε(∂tρ1 + ρ0∇ · ~v) + ε2(∇ · (ρ1~v)) = 0

Linear theory: ∂tρ1 + ρ0∇ · ~v = 0
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Momentum conservation law

ρ (∂t~u+ (~u · ∇)~u) = −∇p+ (
1

3
η + ξ)∇∇ · ~u+ η∆~u

⇓

Differential relations after expansion

ε(ρ0∂t~v +∇ρ1) + ε2(ρ0(~v · ∇)v + ρ1∂t~v +
γ − 1

2ρ0
∇ρ2

1 +
ρ0

γCV
∇s1 − δ∆~v) = 0

Linear theory: ρ0∂t~v +∇ρ1 = 0
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Energy conservation law

ρT (∂ts+ ~u · ∇s) =
η

2

[
∂kui + ∂iuk −

2

3
δik∂lul

]2

+ ξ(∇ · ~u)2 + κ∆T

and

Equation of state:

p = ρRT

⇓

Entropy (leading term)

Second order only: ε2(∂ts1) = ε2(
κ̄(γ − 1)

ρ2
0

∆ρ1)

Models of nonlinear acoustics



Birth of paradigm
Main models

Mathematical results
Generalizations

Preliminaries
Kuznetsov equation
KZK equation
Nonlinear progressive wave equation
Westervelt equation
Relations between equations

Final form of the equation

So in this way we have:

∂2
t φ̃−∆φ̃ = ε∂t[ b∆φ̃︸︷︷︸

dissipation

+ (∇φ̃)2︸ ︷︷ ︸
local nonlinear effects

+ a(∂tφ̃)2]︸ ︷︷ ︸
global nonlinear effects

+O(ε2)

where

a ≡
γ − 1

2
, b ≡

1

ρ0
[δ + κ̄

(
1

CV
−

1

CP

)
]
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Khokhlov-Zabolotskaya-Kuznetsov (KZK)

equation
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KZK equation:2∂2
τξ1
ρ1 − ∂2

ξ2
ρ1 = [b∂3

τρ1 + a′∂2
τρ

2
1]

Original works

[Zabolotskaya and Khokhlov, 1969] and [Kuznetsov, 1971]

The idea of derivation

small disturbance of the NS system

paraxial approximation
the solution a priori has a preferred direction of propagation
slowly varies in longitudinal direction
slowly in the transversal direction

x

t

y

ξ1 ≡ εx

τ ≡ t− x

ξ2 ≡
√
εy
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Figure: Scheme of coordinate transform: a) a source of sound; b) directional sound beam; c) the tip of this
beam; d) frame, that moves with the speed of sound c0, and the rescaled tip (approximately plane wave),
that moves with his own velocity ~u
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Derivation of the KZK equation:2∂2
τξ1
ρ1 − ∂2

ξ2
ρ1 = [b∂3

τρ1 + a′∂2
τρ

2
1]

Main ways

directly from NS system

from the Kuznetsov equation

Further steps

Differentiation with respect to t

Change of variables, as described above
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Result of operations

〈2∂2
τξ1
− ∂2

ξ2
〉ρ1 = [b∂3

τρ1 + a′∂2
τρ

2
1] +O(ε)

where

a′ =
1 + a

ρ0

and

ρ1 = ρ0∂tφ̃
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Examples of numerical simulations and fields of application

Figure: HIFU-modeling [Courtesy of Sysoneson]

Figure: Heating profile produced by the KZK simula-
tion of the 1.06 MHz spherically focused transducer
at 6.3 MPa [Courtesy of Jensen, Cleveland and Cous-
sios]

to palpate tissue locally within the focal region

stone communition with lithotripsy

high-intensity focused ultrasound (to heat and ablate tissue)
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Nonlinear progressive wave (NPE)

equation
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NPE: −2∂2
τ̄ ξ̄1
R− ∂2

ξ̄2
R = −b∂3

ξ̄1
R+ (a+ 1)∂2

ξ̄1
R2

Main step

The idea is the same (rescaling, which depends on the main parameter of system - ε) :
t→ εt = τ̄ ,

x→ x− t = ξ̄1,

y →
√
εy = ξ̄2
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Derivation of the NPE: −2∂2
τ̄ ξ̄1
R− ∂2

ξ̄2
R = −b∂3

ξ̄1
R+ (a+ 1)∂2

ξ̄1
R2

Main ways

directly from NS system [McDonald, 1987]

from the Kuznetsov equation [we checked, that this idea is valid as in the case of KZK
equation]

Simplest way to derive

We already have a perturbed NS system in the form of the Kuznetsov equation

∂2
t φ̃−∆φ̃ = ε∂t[b∆φ̃+ (∇φ̃)2 + a(∂tφ̃)2] (2)

Differentiation and expansion

∂t[(2)]→ ∂3
t φ̃−∆∂tφ̃ = ε∂2

t [b∆φ̃+ (∇φ̃)2 + a(∂tφ̃)2]

2∂2
τ̄ ξ̄1

(∂ξ̄1 φ̃) + ∂2
ξ̄2

(∂ξ̄1 φ̃) = b∂3
ξ̄1

(∂ξ̄1 φ̃) + (a+ 1)∂2
ξ̄1

(∂ξ̄1 φ̃)2 +O(ε2)
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Implicit form

Dependence between ρ1 and φ̃ from the previous calculation

ρ1 = ρ0∂tφ̃

In framed coordinate system

ρ1 = −ρ0∂ξ̄1 φ̃+ ερ0∂τ̄ φ̃

For the dominating order only!

∂ξ̄1 φ̃ = −
ρ1

ρ0
≡ −R

Full form of NPE equation

−2∂2
τ̄ ξ̄1

R− ∂2
ξ̄2
R = −b∂3

ξ̄1
R+ (a+ 1)∂2

ξ̄1
R2
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Comparison of two equations

Visual comparison

KZK
∂2
τξ1

ρ1 − ∂2
ξ2
ρ1 = [b∂3

τρ1 + a′∂2
τρ

2
1]

NPE
−2∂2

τ̄ ξ̄1
R− ∂2

ξ̄2
R = −b∂3

ξ̄1
R+ (a+ 1)∂2

ξ̄1
R2

(!) Direct attempt to change roles of longitudinal coordinate and time fails.

We remind NPE equation in terms of potential φ̃

2∂2
τ̄ ξ̄1

(∂ξ̄1 φ̃) + ∂2
ξ̄2

(∂ξ̄1 φ̃) = b∂3
ξ̄1

(∂ξ̄1 φ̃) + (a+ 1)∂2
ξ̄1

(∂ξ̄1 φ̃)2

and
∂ξ̄1 φ̃ = −

ρ1

ρ0
≡ −R
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Simple coordinate transform

ξ̄1

τ̄

ξ̄2

ξ̄2

τ̄

ξ̄1 ξ̄2 ≡ −ξ2

ξ̄1 ≡ τ

τ̄ ≡ ξ1

So, we’ve kept our coordinate system right-handed and at the same time we’ve changed all
signs in the NPE equation in such way that we have now a pure bijection.
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Applications of NPE

One shall say briefly about modern area of applications of NPE. Despite the fact, that there
are not so much analytical studies of the equation, it has a wide spectrum of applications:

Locey in his work used NPE equation to model atmosphere turbulence effects [Locey,
[2008]]. Because of the fact, that turbulence influences on the index of refraction of at-
mosphere, now this fluctuations can be corrected.

NPE is widely used to model sonic boom/blast waves propagation in different medium,
mostly near a ground surface in the air and water [Leissing et al. [2008], Leissing [2007,
2009], McDonald [2009], Piacsek and Plotkin [2013], van der Eerden and van den Berg]

to model nonlinear sound wave propagation in the stratified atmospheres [Edward Mc-
Donald and Piacsek [2011]]

Models of nonlinear acoustics



Birth of paradigm
Main models

Mathematical results
Generalizations

Preliminaries
Kuznetsov equation
KZK equation
Nonlinear progressive wave equation
Westervelt equation
Relations between equations

Figure: Sound Pressure Level map calculated with the NPE[Courtesy of Leissing]
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Westervelt equation
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Westervelt equation: (∂2
t −∆)Φ = ε∂t[b∆Φ + (a+ 1)(∂tΦ)2]

Ways to obtain

Original [Westervelt, 1963] - has two problems: ordinary acoustic pressure field is, in gen-
eral, not governed by the Westervelt equation [Berntsen, 1989], and conditions of appli-
cability are not so wide [Aanonsen, 1984]

Modern [Aanonsen, 1984] - from Kuznetsov equation with the proper assumptions

Kuznetsov equation

∂2
t φ̃−∆φ̃ = ε∂t[b∆φ̃+ (∇φ̃)2 + a(∂tφ̃)2]

Generalized potential

Φ = φ̃+ εφ̃∂tφ̃

Westervelt equation

(∂2
t −∆)Φ = ε∂t[b∆Φ + (a+ 1)(∂tΦ)2] +O(ε2)
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Properties

Advantages

the only model today, that is used for sound beam interaction

it is possible to parametrize outcoming beam

Disadvantages

energy conversion from high to low frequencies is poor

lacks accuracy in sense of angle of collision

bad convergence during numerical simulations (if one compares with other models)
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Scheme of ultrasonic beam interaction

Figure: Scheme of ultrasonic beam interaction from the multi-element array [Courtesy of RCC of MSU]
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Comparison of beam interactions in homogeneous and heterogeneous
medium

Figure: Normalized azimuth and elevation plane beam patterns generated by a clinical linear array ultra-
sound transducer [Courtesy of Treeby]
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General scheme

Navier-Stokes system

NPE

Kuznetsov

Westervelt

KZK
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Westervelt equation

∃! global solution for sufficiently small and regular data, it converges at an exponential
rate as time tends to infinity [S. Meyer, M. Wilke, AMO, 2011];

local and global well-posedness as well as exponential decay for the Westervelt equa-
tion with inhomogeneous Dirichlet/Neumann boundary [B. Kaltenbacher, I. Lasiecka,
2010],[B. Kaltenbacher, I. Lasiecka, S. Veljović, PNDETA, 2011]

(!) In this publications authors make no difference between generalized and usual potential.
But boundary and initial conditions in general are not the same [Aanonsen, 1984].

NPE equation

This equation is widely enough used, but there is no proper analysis.

Kuznetsov equation

∃! global solution for the sufficiently small initial data (for arbitrary dimensions) for the
corresponding Dirichlet boundary, it exponentially decays with time [S. Meyer, M. Wilke,
EECT, 2013];

proof, that ∃ optimal control, justification of the first order optimality conditions [C. Cla-
son, B. Kaltenbacher, S. Veljović, JMAA, 2009].
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Theorem

Let T > 0 be arbitrary. There exists ρT > 0 such that if:

Eu,0(0) + Eu,1(0) < ρT ,

where

Eu,0(t) =
1

2
‖ut(t)‖2 + ‖∇u(t)‖2,

Eu,1(t) =
1

2
‖utt(t)‖2 + ‖∇ut(t)‖2 + ‖∆u‖2, where ‖u‖ ≡ ‖u‖L2(Ω) ,

Eu,1(0) ≡
1

2
{

∥∥∥∥∥∆u0 + ϑ
ρ0

∆u1 + γ−1
ρ0

u2
1

1− γ−1
ρ0

u0

∥∥∥∥∥
2

+ ‖∇u1(t)‖2 + ‖∆u0‖2},

where (ρ(0), ρt(0)) = (u0, u1) – initial data.

then ∃! solution of Westervelt equation (u, ut) (in a weak H−1(Ω) sense) and such that:

u ∈ C([0, T ];H2(Ω)) ∩ C1([0, T ];H1(Ω)) ∩ C2([0, T ];L2(Ω)), utt ∈ L2((0, T );H1(Ω))

The said solution depends continuously (with respect to the topology generated by Eu,1) on
the initial data.
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Theorem

There exists ρ > 0, such that solutions corresponding to initial data Eu,1(0) ≤ ρ are global in
time. By this we mean: There exists ρ > 0 and a positive constant M > 0, such that as long
as Eu,1(0) ≤ ρ , then Eu,1(t) ≤M ∀t > 0

Theorem

With ρ specified by Theorem above, there exists constants ω, ω1 > 0, such that:

1.Eu,0(t) ≤ Cρe−ωtEu,0(0),

2.Eu,1(t) ≤ Cρe−ω1tEu,1(0).
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Possible generalizations

introduction of fractional derivative

correction terms due to moving/nonhomogeneous medium

Acoustic attenuation

E = E0e
−α(ω)z

Empirical law

α(ω) = |ω|γ , γ = 0 and γ = 2 – trivial cases

Covers only pure fluids, can be derived from some general assumptions

Complex mediums like soft tissue or blood suffer from non-Gaussian attenuation

Solution

usage of fractional Laplacian in the dissipative term

a table with the empirical/theoretical data [Anese et al. [2013], Evans [1979], Omelyan
et al. [2005]]
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KZK equation in terms of fractional derivative [Courtesy of Prieur and Holm]:

2∂2
τzρ1 −

γ + 1

2ρ0
∂2
τρ

2
1 − ∂2

yρ1 −
Lv − Lt
ρ0

∂Θ+1
τ ρ1 = 0

where

Lv = λΘ−2(
4

3
η + ξ), Lt = κ̄λΘ−2

th (
1

CV
−

1

CP
)

where λy−2, λy−2
th were used to keep dimensionality.

And (given by Caputo):

dβf

dtβ
=

1

Γ(1− r)

∫ t

0

1

(t− τ)r
dn

dtn
f(τ) dτ

where 0 ≤ n− 1 < β < n, r = β − n+ 1.

Models of nonlinear acoustics



Birth of paradigm
Main models

Mathematical results
Generalizations

Work in this direction

All basic equations were reintroduced in terms of fractional derivatives [Prieur and Holm
[2011]]

It occurs, for example, that fractional Westervelt equation is good for a work with human
tissues, when 1 . γ . 1.7 [Ochmann and Makarov [1993], Szabo [1994]]

Theoretical research: solutions of such equations and their validity [Holm and Nasholm
[2011] Gan [2007]]), Bazhlekova [2014], Liu et al. [2013], Chen and Holm [2002]]
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Figure: Attenuation α(ω) as a function of ωτ for different values of Θ ≡ γatt [Courtesy of Prieur and
Holm].
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