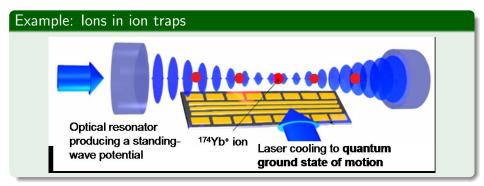
Crystalline beams

Alex Halavanau

Northern Illinois University


2015

< A

∃ >

Definition

Coulomb crystal is a "solid" phase of charged particles (electrons, protons, ions) which are cooled to form a stable lattice.

Image courtesy of A. Bylinskii

Discovery

• Wigner, E. On the Interaction of Electrons in Metals. Phys. Rev. 46, 1002 (1934).

Theoretical studies

- Schiffer, J.P. PRL 57 (1986) 1133.
- Wei, J. PRL 73 (1994) 3089.
- Hasse, R.W. PRL (1999) 3430.

Observations

- Parkhomchuk, V. at NAP-M (Russia, 1979)
- Steck, M. at ESR (Germany, 1996)
- Schatz, T. at PALLAS (Germany, 2001)

Image: Image:

- ∢ ∃ ▶

-∢∃>

Temperature

$$\Gamma = \frac{U}{T} = \frac{1}{4\pi\epsilon_0} \frac{Z^2 e^2}{aT} > 1$$

Strong focusing

The storage-ring must be strong focusing and the beam energy must be below the transition energy

Absence of resonance

There must be no linear resonance between crystal phonon modes and the machine lattice periodicity

Coulomb crystals

Crystalline states

- Ordered beam string of charges
- Zigzag beam 2D states
- Helical beam, etc. 3D states

1D infinite crystal

$$M\ddot{z}_n + \sum_{k=1}^{\infty} \frac{Q^2}{(z_n - z_{n+k})^2} - \sum_{k=1}^{\infty} \frac{Q^2}{(z_n - z_{n-k})^2} = 0$$

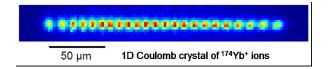


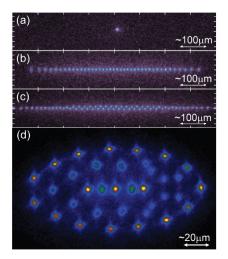
Image courtesy of A. Bylinskii

Alex Halavanau (Northern Illinois University)

- ∢ ∃ ▶

The equation above can be linearized as

The longitudinal location of the n - th particle is designated as $z_n = na + \Delta_n$, where Δ_n is a small displacement from its lattice site.

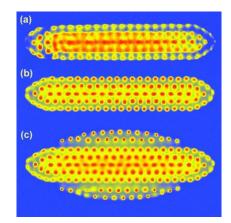

$$M\ddot{\Delta}_n + \sum_{k=1}^{\infty} \frac{2Q^2}{k^3 a^3} (2\Delta_n - \Delta_{n+k} - \Delta_{n-k}) = 0$$

Eigenmodes and eigenvectors

$$\lambda = 4\sum_{k=1}^{\infty} \frac{1}{k^3} \sin(\frac{k\theta}{2})$$

$$\Delta_n = \cos(n\theta + \phi)e^{-i\omega t}$$

Higher dimensions (Mg^+)


Ch. Schneider et. al. 2012 Rep. Prog. Phys. 75 024401

Alex Halavanau (Northern Illinois University)

2015 7 / 9

æ

False-colour fluorescence images of a Ca + /CaF +bi-component Coulomb crystal

Phys. Chem. Chem. Phys., 2008,10, 7200-7210

Alex Halavanau (Northern Illinois University)

2015 8 / 9

Colliders

Tremendous increase in luminosity

Accelerators

Non-dispersive lattice elements, test of fields homogeneity.

Quantum solid state physics

Great venue for experimental tests of various models

Quantum computing

Exploit new features of low-dimensional quantum systems