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Solitons in nonlinear physics

Soliton: This is a solution of a nonlinear partial differential
equation which represents a solitary travelling wave, which:

@ Is localized in space
@ Has a constant shape
@ Does not obey the superposition principle.

Optical fibres, rogue waves in ocean - NLSE

Josephson junctions - sine-Gordon model
Lattice QCD - caloron solutions

Superconductivity - Abrikosov-Nielsen-Olesen model
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Topology
Topological charge
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Non-toplogical solitons

@ KdV solutions

@ Lump-solution in various polynomial models

@ Oscillons

v

Topological solitons

@ Kinks, domain walls, vortices in various models

@ Skyrmions

@ Hopfions

V.
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Sine-Gordon, ¢* and ¢° models
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sine-Gordon model

Field equations
0%v 0%v
= si =0
ot ot 8x8x+ in(v)
v(x,t) = 4arctan e(mV—1+kt+kx)
A simple mechanical example: the chain of coupled pendula
" Qe 0‘.
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sine-Gordon model

Hamiltonian and equations of motion

N 2
| (db, C
HZZE ( ) + = (0 — 05-1)* + mgl(1 — cosb,)

dt 2
d?0, .
/ o C(Ont1+ 0n-1 —260,) + mglsinf, =0
b \\ 3
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Demonstration

How to make an experimental setup for sine-Gordon kinks with a
belt and pins?
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¢* potential model

Lagrangian and equation of motion

1 1
L= 20,009~ 2 (62 -1

Ortp — Ouxd + 20(¢% — 1) = 0

Static solution (kink/antikink)

¢ = tanh(A(£x + xp))

v
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Modes of ¢* kink
Linear oscillations on the background

¢ =K +0¢

where d¢ can be expanded in a set:

o = Z Ca(t)nn(x)
n=0

Eigenfunctions

1
X)= ———
o(x) cosh® x
sinh x
X)= ———
m(x) cosh® x

nk(x) = e™(3tanh? x — 3iktanhx) —e™(1+ k%) + C.C..
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¢* kink-antikink collisions

Properties

@ Annihilate or repel
@ Produce oscillon state after annihilation
@ Have bounce windows structure

@ Fractal structure

Bounce windows and fractal structure refers to the energy
exchange mechanism between translational and internal modes
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Bounce windows structure
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Figure: Bounce window structure of KK collision in a usual ¢* case
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#° potential model
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Lagrangian and equation of motion

1 1
L=50.00"¢ = 5¢* (¢ = 1)°

Ot — Ouxd +20°(¢° — 1) + $(¢* = 1) =0

Static solution (kink/antikink)

1 &+ tanh x
=4 —
¢ 2
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Quick glance on ¢® window stru

@ No internal mode. Energy exchange is due to continuous spectrum
@ Missing window is probably an interference effect (no theory yet)

@ Collective coordinate model is under construction (no theory yet)
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Coupled ¢* model

Lagrangian of the coupled two-component model can be written as:

L= 31(0e1)? ~ (@61’ — (6 ~ 17
+ 3102 — (@2 — (3 — 1] + 5k 3

021 — 021 + 2¢1(¢3 — 1) — 2619 = 0
2 — 262 + 202(¢3 — 1) — 2kpap? = 0

Wess-Zumino model with two coupled Majorana spinor fields
Montonen-Sarker-Trullinger-Bishop model with two scalar coupled fields J
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Static configuration (numerical)

Figure: Static configuration for k = 0.5

A. Halavanau, T. Romanczukiewicz, Ya. Shnir - Resonance structures in
coupled two-component ¢* model, Physical Review D 86, 085027 J
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Different collision channels

Topological charge
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Interesting channels

(0,0)
(—=1,0) +(1,0) = ¢ (0,—1) +(0,1)
(—=1,0) + (1,0)

e {09

A. Halavanau Topological solitons in scalar field theory



Topological flipping and double kink configuration
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Kink-lump collision (left) and double kink collision (right). Numerical
errors prove FDM is not sufficient for the problem and spectral methods

are to be used.
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Boundary collisions - Lagrangian mechanics

Applying boundary conditions on the equations of motion

following the principle of stationary action, one can obtain the equations
of motion for the bulk and the boundary

(assuming M(¢, ¢¢) = B(¢) — A, ¢¢)):
oL d oL d oL\ _

and for the boundary point x = x;

oL oM d oL
¢« 09  dt0¢.

$x(0,t) = Hp, = const from where xy = x;, + cosh™* (\/%) and few
modes survive from collective spectrum:

n(x) = ekx=>) (—1 — k* — 3iktanh (x — xo) + 3tanh (x — x0)2>

v
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Neumann boundary (applied magnetic field)

Vi
0(0,tf)

by courtesy of T. Romanczukiewicz
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Beyond 1+41...
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Higher dimensions

Derrick’s theorem shows that stationary localized solutions to a
nonlinear wave equation or nonlinear Klein—Gordon equation in
dimensions three and higher are unstable.

Skyrme model

32W2\[/<6¢6¢+ (0:00i¢ x 9;00;0)(0;$Did x 9;$0;P)

The first term in the energy is that of the usual O(3) sigma model and
the second is a Skyrme term, required to provide a balance under scaling
and hence allow solitons with a finite non-zero size.

@ Skyrmions, baby Skyrmions
@ Hopfions

@ Skyrme crystals
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Isorotating baby Skyrmions

Lagrangian and topological charge

L= 20,6 96— (06 x 0,0~ U()

B:l/gﬁ@x®$fx
4

° U(@) = 11 - 6]
o U(¢) = p21 — ¢3]
o U(¢) =121 — #3]I1 — #3]

v

Rotation invariance ]
(61 + ig2) — (¢1 + id2)e™!

v
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Isorotating baby Skyrmions

A. Halavanau, Yakov Shnir - Isorotating Baby Skyrmions, Phys.
Rev. D 88, 085028 (2013) J
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Faddeev-Skyrme model

Lagrangian and mapping

_ 1
3272

R3 — C? mapping

_p2n2Z) _ ZpZ
9(Z,20) Z7+zf

Topological charge (Hopf charge)

Q = ab+ Ba

L (062067 = % (abed*0u8°0,6° + w211 — (6°)%])

w

N
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Links, knots and seals in Faddeev-Skyrme model

Massive and isospinning hopfions (work in progress). arXiv:1301.2923
[hep-th], J. Jaykka, Ya. Shnir, D. Harland and M. Speight

A. Acus, A. Halavanau, E. Norvaisas and Ya. Shnir - Hopfion canonical
quantization, Physics Letters B 711 (2012) [hep-th]
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Collaborations and resources

Existing collaborations

@ University of Oldenburg, with Ya. Shnir

Uniwersytet Jagiellonski, with T. Romanczukiewicz
Durham University, with P. E. Dorey and P. Sutcliffe
Vilnus University, with A. Acus

Stockholm University, with J. Jaykka

@ Mathematica 8

@ SKIF supercomputer, Belarusian State University
@ Condor computing cluster, Durham University
°

Over 2000 hours of computing time
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Questions? Comments?
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